
CONCERNING THE SHAPE OF A GROWING DENDRITE 
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Time-independent growth of a dendrite with a nonisothermic surface is consid- 
ered. The Gibbs-Thomson correction, kinetic supercooling and the curvature 
correction under conditions of thermal balance are taken into account. The 
solid- and liquid-phase heat capacities need not be equal. We obtain lower 
estimates for the degree of difference of the dendrite shape from paraboloidal 
(parabolic), valid for any - not necessarily small - values of the parameters 
(supercooling, surface tension, etc.). 

Crystallization progresses unstably when the heat produced by phase transition is re- 
moved through a supercooling melt and kinetic processes on the phase-separating surface are 
sufficiently fast. To determine the parameters of the resulting tree-like structure re- 
quires knowledge of the dimensions, shape and growth rate of each protuberance. Mathematical 
modeling of this problem usually considers steady growth of a single needle-shaped dendrite. 

A simplified variation of this problem, in which the crystal surface is considered iso- 
thermal, has an infinite, continuous family of solutions for a given supercooling: paraboloids 
(parabolas) with one and the same product vp0 , dependent on the supercooling; this was shown 
by Ivantsov [ii]. The resulting dependence agrees with experiment, but does not allow v 
and P0 to be separately obtained. At the same time, it is known from experiments that for 
such growth are obtained a certain velocity v and radius of curvature P0 of the point of the 
dendrite. There arises a problem of velocity selection, toward solution of which progress 
was made only in the middle 1980s. It turned out that even small surface tension and its 
small anisotropy are singular perturbations, and lead in a number of cases to selection of 
a finite number of solutions from the initial continuous Ivantsov family (for arbitrary 
supercooling, this was proved in [2]). Besides this, the growth velocity selection problem 
was solved analytically only in the limit of small deviations of the unknown dendrite surface 
from the Ivantsov paraboloid (parabola). 

In the present work, we consider the question of the limits of applicability of such 
an assumption: we obtain lower estimates for the degree of difference of the dendrite shape 
from paraboloidal (parabolic), valid for any- not necessarily small -values of the param- 
eters. Moreover, in addition to the Gibbs-Thomson correction, both the curvature correction 
in thermal balance and the kinetic processes on the phase-separating surface are taken into 
account. We also derive an integrodifferential equation describing the dendrite shape, of 
which a special case (with both liquid and gas phases having identical heat capacities, and 
with other simplifications) has been widely used in recent years, but, to the author's know- 
ledge, without any proof. 

Consider the crystal growth process with constant velocity v in the z-direction. Assume 
that the crystal surface S is smooth and divides space into two regions: Uz, filled by the 
crystal, and U2, the melt. The temperature distribution T = T i, x ~ Ui, in a system of 
coordinates moving with speed v is described by the time-independent heat conduction equation 

0T Dv2T -~ v = O. ( 1 ) 
Oz 

The c o n d i t i o n  of  t he rma l  ba lance  on S has t he  form [4] 

[ OTI n o n  OT2 i D c~ c---5----c2--W7_ . v,~[L--(gn-TmeltL-1(c~--c:)y)p-1(x)] (2) 
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The temperature at the crystallization front is given by [3] 

T --- Tmelt__ K-ion - -  Tmel t L - 1 y p - 1  (X). (3 )  

F a r  f rom t h e  f r o n t ,  t h e  m e l t  i s  s u p e r c o o l e d :  lim T = Tme l t  < T~. I n  a d d i t i o n ,  t h e r e  

i s  a c o n s t r a i n t  on t h e  b e h a v i o r  o f  T a t  i n f i n i t y :  max{IT  - + IVTI} < ~,  and in  t h e  t h r e e -  

d i m e n s i o n a l  c a s e ,  w i t h i n  any  convex-down  p a r a b o l o i d  w i t h  v e r t i c a l  a x i s  o f  s y m m e t r y ,  i t  mus t  
h o l d  t h a t  IT - T~ I + [7T]} ~ 0 f o r  z § +~o u n i f o r m l y  in  x and y .  

Introducing the length scale I = 2D/v, for the nondimensional temperature t = (T - 
T~)c~L -I, we obtain the system of equations 

VZt@2- 0t = 0, (4 )  
Oz 

p oq ot~ 2 ( 1 ~ (5) 
- -  - -  - -  17, . ,  

On On , t9' 

do (6) tls, = A - -  ~v~- -  - - ,  
19' 

(7) lira t = 0, It[ + Ivtl ~ M. 

Here  ~ = c a / c a ;  A = ( T m e l t  - T~)c2L -~ i s  t h e  n o n d i m e n s i o n a l  s u p e r c o o l i n g ;  a = c~/KL; d o = 

c 2 T m e l t ~ / L 2 ;  d 1 = E/L + (1 -- 8 )d0 ;  S '  = S / l  i s  t h e  n o n d i m e n s i o n a l  s u r f a c e ,  whose r a d i u s  o f  
c u r v a t u r e  i s  p '  = vp / 2D .  

Now l e t  T s a t i s f y  t h e  t h e r m a l  c o n d u c t i o n  e q u a t i o n  (1 )  and t h e  b o u n d a r y  c o n d i t i o n s  a t  
i n f i n i t y .  We f i x  an a r b i t r a r y  p o i n t  x06S and c o n s i d e r  t h e  f u n d a m e n t a l  s o l u t i o n  o f  Eq. ( 4 ) :  

where  R = Ix - -x0 ] .  
does  n o t  c o n t a i n  x0: 

g (x) = exp (z - -  Zo - -  R),/2~R, 

In Green's formula for any finite region U c U i' = Ui/[, whose closure 

at Og . )ds  O. (8 )  i" g - -  t ~- 2gtn z' = 
a'5 8n On 

We take U = U i' N [B(x0, r) - B(x0, ~)], where B(x, a) is a sphere of radius a with center 

at x. We evaluate the integral over Ui' n @B(x0, r) for large r, 

g - -  t - -  + 2gtn~ .~ 5 ! (it I + 1vtl) gds ~ 5 (It[ ~- [vtl) exp ( z - -  Zo - -  r) dz. 
On On dU " �9 ' 

�9 O U  

The i n t e g r a l  o v e r  t h e  i n t e r s e c t i o n  o f  @ U w i t h t h e  p a r a b o l o i d  r -  (z  - z  0) <_ C i s  l e s s  t h a n  
c max { I t l  + I v t l ,  r - ( z  - z 0 )  -< c }  a n d  t e n d s  t o  z e r o  f o r  f i x e d  C a n d  r § ~. However ,  t h e  
i n t e g r a l  o v e r  r e m a i n d e r  o f  3U i s  l e s s  t h a n  M exp(--C) and becomes a r b i t r a r i l y  s m a l l  f o r  s u f -  
f i c i e n t l y  l a r g e  C. T h e r e f o r e ,  t h e  i n t e g r a l  o v e r  U i ' f l  8B (x 0, r )  t e n d s  t o  z e r o  as  r § ~.  Sub- 
s t i t u t i n g  U into (8) and taking limit as r ~ ~, ~ + 0, 

f (  dt~ t. ag '~ ~, �9 _g On i On i - I - 2 g t n ~ ) d s = t ( X o ) ,  i=:  , 2, 

where  n~ i s  t h e  o u t w a r d  n o r m a l  t o  U i '  ( n l=n ,  n 2 = - - n )  M u l t i p l y i n g  t h e  f i r s t  o f  t h e  two o b t a i n e  
e q u a t i o n s  by  ~ and a d d i n g  t h e  r e s u l t  t o  t h e  s e c o n d ,  

Hereh = 2gn z 
(5) into (9), 

[ (  orlon 8t2 l O n  ( ~ +  1) t ( x 0 ) = f  ~ g(x, x 0 ) + ( ~ - - l ) t ( x ) h ( x ,  x0)]ds. ( 9 )  

- 8g /3n  = [n z + (1 + R - a ) n R ] g .  Now s u b s t i t u t i n g  t h e  t h e r m a l  b a l a n c e  e q u a t i o n  

~3@ l t ( x ~  1 - 2  , lp'd--~ ) g(x '  x ~  ~--12 g"ft(x)h(x'  xo)ds. (10)  

We have obtained the necessary condition for growth of S with constant speed v, valid for 
any boundary condition on the assumed value of t on S' (corresponding to T on S). In par- 
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ticular, when the t, obtained from the boundary condition (7), is substituted into (I0), 
the result is an equation describing all solutions of the system (4)-(7). 

If we take S' in (i0), symmetric relative to displacements in the y-direction, we 
obtain 

t (x0) = [ ~ g~ (x, x0) dx + ~ - -  1 ~ t (x) h~ (x, Xo) d~. ( 1 1 )  
~, lp' 2 

S 2 ' S ;  

H e r e  S 2 '  i s  t h e  p r o j e c t i o n  o f  S '  o n t o  t h e  x - z  p l a n e ,  r = v/(x - x o )  2 + (z  - Zo) 2, 
+~ 

g2 (x, xo) = .f g (x, x0) dy = ~-1 exp (z - -  z0) K0 (r), 

th (x, x0) = 2g~% - -  OgdOn = n-1 exp (z - -  zo)[n~Ko (r) + n~K1 (r)]. 

E q u a t i o n  ( 1 1 )  d e s c r i b e s  t h e  t i m e - i n d e p e n d e n t  g r o w t h  o f  a t w o - d i m e n s i o n a l  d e n d r i t e .  

We now make use of Eq. (i0) to determine the difference in shape of a needle-shaped 
dendrite from paraboloidal. Briefly, the idea of the calculation is as follows: The inte- 
grals on the right-hand side of (I) may be estimated using analogous integrals over two para- 
boloids, the larger of which contains S' while the smaller is contained within S' The smallE 
the difference of S' from these two paraboloids, the closer the right-hand side of (i0), 
as a function of S', is to a constant. But we know the degree of difference of the left-hanc 
side from constant; it is given by the term ~v n + d0/lp ~ in (6). In this way, we may obtain 
a lower estimate for the difference between the radii of curvature of the exterior and the 
interior paraboloids. 

Thus, we place the coordinate origin at the vertex of S': z = z(r, ~) and define 

P l = i n [  O(r ~) -- sup O(r z) p[_. 9i 
8 (--2z-----7 ' P~ O ( - -2z )  ' Z ' 

~l = inf - -2z  O(r 2) -, 2 
s r---7 Y-  O(- -2z . )  'tt~ =: sup ~ - - v ~ - - -  s r- 0 (--2z) p / _  Pil (12) 

Further, consider the case of finite, positive Pl  and P2 (and P l ,  ]a f ,  such that p l f / p 2  <_ 

DI <- P0 <- P2 -< P2 <- P22/Pl )" Thus, the dendrite surface S is confined between two paraboloid~ 
of revolution ~(Pz) and H(pf) [hence between H(DI) and H(pf)], where H(p) is specified by 
the equation z =--r=/2p. 

Let P0 denote the radius of curvature of S at the vertex; Pmin, the minimum radius of 
curvature of S; and t o = A - ~v - d0/p0 the nondimensional temperature at the vertex of S. 

Because any paraboloid of revolution is a solution of the isothermal Stefan problem 
[i] 

I g (x, Xo) rdrd~p ~ I (p), 
Ii(o) 

i.e., I depends only on p and not on x0. Substituting x0=0 and integrating, we obtain 
I(p) = pf(p), f(p) = exp(p)E1(p). 

We now estimate the first integral in the right-hand side of (ii). For z 0 = 0 g(x, 

0)s, ~g(x~O)n(0j), if we compare the values of the function at points with the same projections 
onto the horizontal plane. Therefore, 

- -  - - - -  ~1 - - - ~ )  p[f(p[). (13) ,f ' / (, t = 

,, ' P l r~ t l ]  s" lp" ) Prom %) 

On the other hand, 

Or _ 1 a(rD I /  ~; Or 
a ( - - z )  s , ,  . . . . . .  r a (--2z) ~> V - m~[~,z =~o' --2Zo a ( - - z )  

and c o n s e q u e n t l y ,  f o r  a n y  z ,  z o ~0 l r  - r o l s ,  > I r - - rol~(~i  ), RIs,~Rln(~i ) 
g(x,  xo)m~i ) , i f  t h e  v a l u e s  a r e  c o m p a r e d  a t  p o i n t s  X/s, and x lm~) ,  Xols, 

same c o r r e s p o n d i n g  p r o j e c t i o n s  o n t o  t h e  z - a x i s .  T h e r e f o r e ,  

and  g ( x ,  Xo)s,i~ 

a r x~ w i t h  t h e  
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j'(1 dl 
l~Gt I ) 

In particular, (14) is valid for z 0 § -~. Substituting the inequality (14) with z 0 

into (13) and (i0), we find 

w h e r e  J m a x  a n d  J m i n  a r e  t h e  e x t r e m a l  v a l u e s  o f  t h e  s e c o n d  t e r m  i n  ( 1 0 ) .  
m a k e  u s e  o f  

(14) 

-> --oo 

To evaluate these, we 

i' h (x, x0) ds ~ 1, 

w h i c h  r e s u l t s  f r o m  ( 8 )  w i t h  t h e  s u b s t i t u t i o n  t ~  = c o n s t  [ s o  t h a t  t ~  s a t i s f i e s  Eq .  
w e l l  a s  h (  x, xo ) _> 0~ C o n s e q u e n t l y ,  

A - -  a v  - -  d0/Pmtn % %~in ~ t (X) h (x, x0) ds ~ tm,ex ~ A. 
S '  

(4)], as 

Because Jmax and Jmin differ from the integral of the latter estimate by the factor 
(B - / 1 ) / 2 ,  

2 2 2 

Using these inequalities, we obtain 

p;f (~;)- p;f(~;) .. i( 0;f (~i) ~ ~'_ ,, --- 

, ~+l to_G.~,) /! ~+,  
- - k  2 ~, 2 

d I ~@ i A- -  Jmax) - -  

_ _  A__Jmax  ] ~ av ~, d/po - -  clpmu~ 
" j A 

where a = ab; b = min {6, i}; d = d o (6 + 1)/2; c = d o I 1 - ~]/2 + dla. 

We now find the majorant of the left-hand side of the latter inequality in the form 
of a product ap of several factors: 

f (t~;) --f (pl)~ (p; -- ~;) max [--dfldx] = (p; -- ~i){--~ ~, -- f (~;)I • (I -- 
.;_<x_<d , ~, I pl 

P ; f ( ~ [ ) - - P ; f ( P ; )  -= AP , Pl f(V;)--f(p~) ~ Ap [1 ~- 1 , i  

di(.;) ,~2 ~ p. f(~;) v-T~ L f(,~;) " j  

We prove that the function 

(x) = 1/[ (x) - -  x = exp ( - - x ) / E 1  (x) - -  x ,  x > O, 0 < ~1 (x) % I, 

m o n o t o n i c a l l y  i n c r e a s e s .  D e f i n e  

(15) 

u (x) = exp ( - - x )  xf2"rl ' = exp ( - -x)(1  - -  x f  - -  xf2) .  

Its derivative u' = exp(-x)(f - f2 _ xf2) < O, because 

[ (x) = - - f -  i + t / x  x exp ( t /x)  

Consider the asymptotic behavior of u(x) as x § ~: 

1 / - , x  

for large x. 
monotonic. 

f (x) = x-~ - -  x -2 § 2x - ~ -  6x-~ § 0 (x -9 ,  

u (x) = exp ( - - x ) ( x  -3 q-  0 (x-~)) > 0 

Consequently, u(x) > 0 and ~'(x) > O, from which it follows that n(x) is 
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Using this, we obtain the following estimate: 

Ap ~ av + dfpo--clpmt. ~ av + dlPo--C/pmtn (16)  

m. (1 + n (p)) A 2A 

Here p = VPo/2D is the Peclet number. 

The second inequality of this chain is applicable for large supercooling, when p + 
and q(p) + i. For small supercooling (p + 0), q(p) ~ in-1(p-1). 

The estimate (16) may be written differently: 

~.(2aD)p + (d--cpJpm~n) (17 )  Ap ~ . . . .  . 
(1 + ~ (p)) A 

For small a, d o , d I A * I(p) and (i + q(p))A ~ A + p(l -- A). 

The vast majority of works analyzing time-independent growth of single dendrites con- 
sider the symmetric model (~ = i) with null coefficient d I. In that case the estimates (16) 
and (17) simplify: 

Ap . ocv ~ do/po 
r " , (18) 

p,, (1 + ~l) A 

Ap ~ (2~D)p do (19)  
(1 +~])A 

For  s m a l l  v a l u e s  o f  a ,  do ,  and dz ,  S i s  n e a r l y  a p a r a b o l a  and Pmin * P0- I n  t h e  g e n e r a l  
c a s e ,  i f  ~ r 1, w h i l e  Pmin i s  c o n s i d e r a b l y  l e s s  t h a n  P0, e s t i m a t e s  (16)  and (17)  may l o s e  
t h e i r  m e a n i n g ,  b e c a u s e  t h e  n e g a t i v e  a d d i t i o n  on t h e  r i g h t - h a n d  s i d e  becomes t o o  l a r g e .  We 
may t h e n  a d v a n c e  in  t h e  f o l l o w i n g  way: s u b s t i t u t e  i n e q u a l i t y  (13)  in  an a n a l o g o u s  way,  t a k -  
ing  x 0 as  a p o i n t  on t h e  f r o n t  p o s s e s s i n g  t h e  minimum t e m p e r a t u r e  t m i n :  

( ! - - - t  Xo)r rd,p   ( 1 - - - - )  ,olf (,4). 
:;:' 10' / ' Pmtn 

Substituting (14) and (20) into (i0), we obtain 

p;f (~;) A m,,,, 
We estimate the left-hand side of the last inequality: 

d Ap (3 - -  3~,;f (,u,[)); f (u.;) - -  f (,u.;) ~ (p~ - -  p;) ,max. ~ [f (,o/Ix) -- f (x~/p;)l ~ 
P i ~ x ~ p  o 

__ + < Ao (1 + s~ (~;)) 
p;i (~;) ,o2 m f (~i) m 

Thus, 

(20) 

For d I 

(1 + 3n(p)) A,o O h  6 - t . . , ,  d~ ~ Odo--a~A 
P2 A Pmin 9min A 

= 0 we obtain the estimate 

(21)  

A9 ~b ev + do/Pmta (22) 

9~ (I + 30)A 

We have thus obtained lower estimates for the relative [Eqs. (16), (18), (21) and (22)] and 
absolute [Eqs. (17) and (19)] differences of the dendrite shape from paraboloidal. 

All the preceding calculations were performed with the assumption that the free and 
interior surface energies 7 and e and the linear kinetic coefficient K are isotropic. How- 
ever, it is obvious that the derivation of the principal integrodifferential equations (i0) 
and (ii) and of the estimates, (16)-(22), is also valid for anisotropic ~, e and K. More- 
over, in (i0) and (ii), ~, d o and d I appear as specified functions on S'; in estimates (16)- 
(22), everywhere that d o and d I are coefficients for p0 -I, they take their values at the 
peak of the dendrite; instead of e, wherever it takes its maximum value on S' 
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To analyze the two-dimensional problem of estimation of integrals (14) and (20), we 
make the following modification: 

j'e(x, ,! + i' z(x, ,,o). 
s, x.<0 ~o d ( - -z )  

ri(g I ) 
,e (x,  xo)dx = V ~i ~_; : 0 , ~ ) ;  

E s t i m a t e s  ( 1 6 ) - ( 2 2 )  r ema in  v a l i d  a l s o  in  t h e  t w o - d i m e n s i o n a l  c a s e  w i t h  t h e  r e p l a c e m e n t  o f  
n (P )  by 

n2 (P) = ] / p -~exp  (--p)/Erfc ( l /p)  - -  p, 0 < n~ ( P ) <  1/2, 

while in estimates (21) and (22), 1 + 3q must be replaced by 3/2 + 3D2. 

The physical meaning of the derived results is the following: to the first approxima- 
tion, the lower estimate for the relative difference Ap/p2 of the dendrite shape from para- 
boloidal for a given supercooling depends linearly on v and p0 -I In the symmetric model, 
for example, if by some other means the degree of paraboloidalness AP/p2 ~ ~ of the dendrite 
becomes known, then one may say that the growth rate of such a dendrite is not greater than 
v,, v, = vA/(~ + d0/2Dp), while the radius of curvature of the point is not less than p,, 

p,-z = vA/(2~Dp + do). From the unsymmetric model are obtained analogous estimates for v 
and Pmin" However, in order to estimate the absolute difference AQ, it is sufficient to 
know only the supercooling A, because for small a, d o and d i it is not difficult to obtain 
a lower estimate for the dependence of p on A. 

The obtained estimates may be useful for determining in a given case whether the dendrite 
may be considered a paraboloid (parabola) to a sufficient degree of accuracy, which is as 
important in practical work as in theory. 

This is illustrated by the example of growth of a dendrite of tin. In tin, Tmelt = 
505 K, L = 4.26 • i0 e J/m a, c 2 = 1.83 • 106 J/(ma.K), c z > c2, d i = 0, ~ = 0.109 J/m 2 [3], 

and K = 0.116 m/(K-sec) [5]. For the supercooling Tmelt - T~ = 10.5 K, the dendrite grows 

with speed v = 0.25 m/sec [3], and from inequality (18) we obtain Ap/P2 e 21%, and the contri- 

bution in the estimate from the term with kinetic coefficient K in this case is 25 times 
larger than that of the free energy y. Nevertheless, in the majority of works investigating 
the correction to the parabolic dendrite shape and the resulting discrete velocity distribu- 
tion, the influence of surface tension is limited, disregarding supercooling at the crystalliza- 
tion front. From the above, it follows that such simplification is evidently not correct 
enough. For the value obtained in [6], v = 0.8 m/sec for Tmelt - T~ = ii K, we obtain Ap/p2 
65%. 

Let us now see what the obtained estimates give for the theory of microscopic solu- 
tions. In this theory, it is assumed that ~ = 1 and ~ = d I = 0, and from the linear- 
ized differential equation for the form of the surface for any A, 0 < A < i, [2] concludes 
that the so-called LM- K parameter o = d0/p00 is a function of the anisotropy and does not 
depend on the supercooling or on the other parameters of the problem. In [7] are obtained 
experimental results for o for various A: from 0.02 to 0.03. Substituting d0/P0 = op into 
(18), we obtain AP/P2 ~ op/2A. Consequently, the theory of microscopic solutions is inap- 
plicable for large A (p must be small in comparison with o-I). 

In [8], for linearization of the symmetric model in the limit of small p, the influence 
of surface tension and kinetic supercooling and its anisotropy on the selection of growth 
rate of a two-dimensional dendrite is analyzed. In particular, in the limit of isotropic 
kinetics, when the anisotropy coefficient of ~ is small in comparison with ed, the anisotropy 
coefficient of do, an asymptote is obtained for the growth rate ev ~ (edk)S/Sp I/6 (k = d0/2D~ 
is a nondimensional parameter). Substituting this expression into (18), we obtain for p 
0, Ap/p2 ~ (edk) 5/6 (p-i/a + kp-4/a) § ~, and the degree of nonparabolicity of the dendrite 
grows without bound. 
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NOTATION 

T) temperature; v) growth rate; z) direction of growth; S) crystal surface; n) normal 
to S; ~(• radius of curvature of S; x ) radius vector (x, y, z); (r, ~)) polar coordinates 
in the x-y plane; D) thermal conductivity; ci, i = I, 2) heat capacity; L) latent heat of 

melting; g) surface internal energy; y) surface free energy; Tmelt) melting temperature of 

a planar crystal; K) linear kinetic coefficient; I = 2D/v) length scale; t = (T - T~)c=L -I) 
nondimensional temperature; p = vp0/2D) Peclet number. The subscripts i = i, 2 denote the 
solid and liquid phases respectively; primes denote nondimensional quantities. 
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DETERMINING THE THERMAL CONDUCTIVITY OF CERAMIC MATERIALS BY SOLVING 

THE INVERSE HEAT-CONDUCTION PROBLEM 

V. E. Ved', V. A. Ivanov, S. F. Lushpenko, 
and Yu. M. Matsevityi 

UDC 536.21 

A method is propounded for determining the temperature dependence of the thermal 
conductivity of ceramic materials. It is based on a solution of the inverse 
heat-conduction problem. An installation is described for carrying out the 
thermophysical experiment. The temperature dependence of thermal conductivity 
of a ceramic material has been obtained. 

The implementation of effective high-temeprature processes and equipment depends to 
a large extent on investigations of materials, and a considerable part of this consists of 
exploring the thermophysical characteristics of the materials. Such investigations, as a 
rule, reduce to solving a number of complex technical and mathematical problems. This ap- 
plies to the experimental-computational determination of thermal conductivity, although here 
it is usually not necessary that a temperature field varying according to a specified pro- 
gram be maintained, it being sufficient to ensure a stable steady-state heat transfer. None- 
theless, growing demands for precision in the determination of thermal conductivity over 
a wide temperature range make it necessary to perfect both the techniques of the thermal 
experiment and the processing of the results. Very promising in this connection is the use 
of methods of solving the inverse heat-conduction problem (IHCP) [i, 2], allowing a widen- 
ing of the range of variation of thermal loading of the specimen, which is suitable for the 
indirect measurement of thermal conductivity. This makes it possible to lower the demand 
for precise experimental data, and to raise the quality of identifying the thermal conduc- 
tivity, by simultaneous processing of information received from a large number of points 
at which temperature is monitored, or under the conditions of an increased number of variants 
of thermal loading. Advantages of the IHCP methods consist of being able to take into account 
properly and without special difficulties, the dependence of thermophysical properties on 
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